|
最終更新日:2017年1月23日
岩石(Rock)を分類する(Classify)場合に、最初に火成岩(Igneous Rock)・変成岩(Metamorphic
Rock)・堆積岩(Sedimentary Rock)のように3つに分けるが、この変成岩を生成する作用(Action)を変成作用(Metamorphism)と呼ぶ。自然界(Nature)における温度(Temperature)と圧力(Pressure)の上昇(Rising)により、地表にあった何らかの岩石の構成鉱物の一部または全部が、新たな条件の下で安定な別の鉱物に変化した場合にそれを変成岩と呼ぶが、その形成の過程を指す。 主にプレート運動(Plate Movement)によって地表付近にあった岩石が地下へ埋没する(Bury)と、地熱(Geothermal)による温度の上昇と上部に被さる岩石の荷重(Rock Load:静岩圧、Lithostatic Pressure)やプレート運動(Plate Movement)での応力(Stress)などによる圧力の上昇を受けるが、その過程で変成作用を生じることが多い。 変成作用はプレート運動の履歴(History)を変成岩に記録(Record:一番強い記録しか判読できない場合が多い)として残している場合があるので、変成岩と変成作用の研究から、プレート運動によって地殻(Crust)がどのように形成されてきたかを復元することが行われている。 |
リンク |
全般 | 変成度 | 変成組織 | その他 |
リンク| 変成岩| 変成作用| 組織・機関| 雑誌| メーリングリスト| |
変成相/変成相系列/変成帯| P-T-t path| UHPM(超高圧変成作用)| 低変成度| |
変成組織/構造| |
変成流体| 花崗岩| シュライネマーカースの束| 交代作用|コルジンスキー| 変質作用| |
【交代作用】(変成作用では、水を主とする揮発成分以外は、基本的に出入りしないが、一般的に物質の出入りがある場合は交代作用と呼ぶ。例えば、スカルンでは交代作用がなければ鉱床は生成しない。)
【コルジンスキー】(Korzhinskii:開放系での交代作用などを研究。コルジンスキーの鉱物学的相律が知られている。)
変成帯 |
広域変成岩(regional metamorphic rocks)の成因はプレートテクトニクスに基づいて解釈される。それにより、高圧低温型と低圧高温型の変成帯(metamorphic belt)が対になって存在する理由も説明されている。
一方、接触変成岩(contact metamorphic rock:熱変成岩、thermal
metamorphic rock)はマグマの近辺においてのみ形成され、動力変成岩(dynamic
metamorphic rock)は断層(fault)内部にのみ形成される。
変成岩の形成されうる場所 〔総合地質情報研究グループの『ベータ版』の『シームレス地質図サポートページ』の『岩石や地層のでき方』から〕 |
〔Steven Dutch氏(Natural and Applied Sciences, University of Wisconsin-Green Bay)による『296-492 Crustal Movements: Fall 2004』の『Continental Drift and Plate Tectonics』の『Subduction Zones and Orogeny』から〕 |
変成の場 対の変成帯 対の変成帯を接しさせた中央構造線 …もともと離れた場所にあった領家変成帯と三波川変成帯を接しさせた大断層が、中央構造線です。
〔長野県下伊那郡の大鹿村中央構造線博物館の『中央構造線ってなあに?』の中の『対の変成帯』から〕 |
Metamorphism and Plate Tectonics Paired Metamorphic Belts 〔Stephen A. Nelson氏(Tulane University)による『Earth & Environmental Sciences 211 EARTH MATERIALS』の中の『Metamorphic Facies & Metamorphism and Plate Tectonics』から〕 |
〔David R. Jessey氏(Geosciences Department, Cal Poly.)による『METAMORPHISM』から〕 |
変成相 |
変成岩は、変成作用の重要な要因である温度と圧力の違いによって区別される。特定の温度・圧力条件下では、特定の鉱物の組合せが安定なため、それぞれ固有の鉱物を含む変成岩となりやすい。それぞれの固有の変成岩は、指標となる鉱物名などを用いた変成相(metamorphic facies)名で表わされる。実際には、鉱物組合せだけでなく化学組成も異なるため、それらを詳しく調べることで、生成した温度・圧力条件を決定できる場合が多い(地質温度計・地質圧力計という)。また、適当な放射性元素を含んでいれば、その母と娘の同位体組成を測定することにより、その半減期から生成年代を決定できる(放射年代という)。これらのデータがそろえば、含まれる岩石の時間と空間における変化の経路を決めることが可能であり、それは地殻変動を明らかにするための情報を与える。このような変化の経路はプレート運動と関連しており、世界的にはいくつかの系列を示す場合が多く、これらは変成相系列(metamorphic facies series)と呼ばれる。
・1bar(バール)=106dyn/cm2=105N/m2=105Pa(パスカル)
・1 M(メガ)Pa=106Pa=10bar=0.01 kb(キロバール:1キロバールはほぼ1000気圧に等しい)
・1 G(ギガ)Pa=109Pa=104
bar=10 kb
・静水圧(hydrostatic pressure)では、10 km深度で約1 kbとなる。また、密度3(g/cm3)程度の鉱物から構成される地殻での静岩圧(lithostatic
pressure、overburden pressure)では、10 km深度で約3 kbとなり、平均地殻厚さ30
kmの地殻の底では約9 kbとなる。
Diagram showing metamorphic facies in pressure-temperature space. The domain of the graph corresponds to circumstances within the Earth's crust and upper mantle. Wikipedia(HP/2012/11)による『Metamorphic facies』から 20世紀初期にエスコラ(Pentti Eskola、1883-1964)により提唱された概念である変成相(Metamorphic
facies)とは、温度・圧力の特定の領域では、特定の鉱物が安定に存在するので、それにより変成作用の強度を示したものである。全岩の化学組成が塩基性である岩石(Mafic)に適している。 |
A high geothermal gradient such as the one labeled "A" , might be present around an igneous intrusion, and would result in metamorphic rocks belonging to the hornfels facies. Under a normal to high geothermal gradient, such as "B", rocks would progress from zeolite facies to greenschist, amphibolite, and eclogite facies as the grade of metamorphism (or depth of burial) increased. If a low geothermal gradient was present, such the one labeled "C" in the diagram, then rocks would progress from zeolite facies to blueschist facies to eclogite facies. 〔Tulane UniversityのDepartment of Earth & Environmental SciencesのStephen A. Nelson氏による『Geology Courses』の『Earth & Environmental Sciences 211 EARTH MATERIALS』の『Metamorphic Facies & Metamorphism and Plate Tectonics』の中の『Metamorphic Facies』から〕 A(高温低圧型)・B(中温中圧型)・C(低温高圧型)は変成相系列と呼ばれる。 |
〔総合地質情報研究グループの『ベータ版』の『シームレス地質図サポートページ』の『岩石や地層のでき方』から〕 |
〔Department of Earth and Ocean Sciences, the University of British Columbiaによる『EOSC221:Introduction to Petrology』の『Igneous, Metamprphic and Sedimentary Rock Info』の『Metamorphic』の中の『The Facies Concept』から〕 |
In order to understand the time-temperature histroy of regions, metamorphic petrologists have defined typical metamorphic series, i.e., idealized sequences of metamorphic facies associations typical of various deformation regimes. 〔Department of Earth and Ocean Sciences, the University of British Columbiaによる『EOSC221:Introduction to Petrology』の『Igneous, Metamprphic and Sedimentary Rock Info』の『Metamorphic』の中の『The Facies Concept』の『Metamorphic Facies Series』から〕 |
Fig. 25-3. Temperature-pressure diagram showing the three major types of metamorphic facies series proposed by Miyashiro (1973, 1994). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 〔Western Kentucky UniversityのElizabeth Goeke氏による『Lectures in Geology』の中の『25. Metamorphic Facies and Mafic Rocks』から〕 |
図10 a) 都城(1965)による変成相系列の定義.同一の変成帯に属する変成岩の変成相を連ねたもの(太実線)を変成相系列と定義した. b) 個々の岩石は,沈み込み〜上昇過程を通じて,複数の変成相を経験することがある.図中最高変成度の岩石では5つ(図中丸数字の@〜D).これをダルーファ(De Roever and Nijhuis, 1963)は「複数変成相変成作用」と呼び,P-Tパスの概念の先駆けとなった.これを基にスピアらは,同一の変成帯に属する個々の変成岩のP-Tパス(細実線)の中で,温度ピークの条件(太実線)を連ねたものを変成相系列と再定義した(Spear et al., 1990). 丸山ほか(2004)による『広域変成作用論の革新的変貌』から |
UHPM(Ultra High Pressure Metamorphism) |
UHPM(Ultrahigh-pressure metamorphism、超高圧変成作用)とは、一般にコーサイト(coesite、化学式SiO2)が出現する程度の高圧条件の変成作用に対して言う。形成深度は平均的な大陸地殻の最深部よりも大きいため、上部マントルの環境条件についての情報をもたらす。それは、ダイヤモンド(diamond)の生成環境の一部と重なる。【リンクはウィキペディア】
UHPM terranes throughout the world Plate Tectonic & northern Pacific(HP/2012/11)による『UHPM - ultra high pressure metamorphism』から |
Fig. 2. Distribution and peak metamorphic ages of recognized VHP terranes worldwide (modified after ref. 27). Liou et al.(2007)による『Very high-pressure orogenic garnet peridotites』から 27. Liou JG, Zhang RY, Ernst WG, Rumble D, Maruyama S (1998) Rev Mineral., 37, 33-96. |
図4 世界の超高圧変成岩の分布(Parkinson et al., 2002を一部改変).産地の下の数字は年代(Ma)を表す.白抜きで示した地域は,2000年以降に新たに発見された超高圧変成帯. 丸山ほか(2004)による『広域変成作用論の革新的変貌』から |
Ultrahigh-Pressure Metamorphism Hacker(2001)による『Part 14. Metamorphism and Tectonics II』から |
シュライネマーカースの束 |
相平衡図(相図、座標軸としては温度・圧力・化学成分のうちの2つを用いるのが一般的)を作成するために、変成岩を対象とする場合にはシュライネマーカースの束の理論(Schreinemakers' Pencil Theorem、Schreinemakers' Analysis、Schreinemakers' Bundle、Schreinemakers' Method:【注】Schreinemaker'sとされている場合があるが、間違い)がよく用いられる。基本は、相図の不変点から周囲へ伸びる線群を、熱力学データを利用して計算のうえ表示することである。シュライネマーカース(Schreinemakers, F. A. H.)による研究結果は1915〜1925年頃に公表されているが、ゼン(Zen, E-an)が1960年代以降に、彼の一連の研究成果の公表の過程で紹介してから、一般的に適用した研究が増えた。
Schreinemakers' method is a geometric approach used to determine the relationships of reaction curves that intersect at an invariant point in multicomponent systems. This method produces topologically correct bundles or sequences of reactions around an invariant point, and can be applied to a wide variety of phase diagrams such as P-T, T-X, activity-activity, etc. The method is fully described in Zen (1966, Construction of Pressure-Temperature Diagrams for Multicomponent Systems after the Method of Schreinemakers -- A Geometric Approach. U.S. Geol. Surv. Bull. 1225, 56p.). | |
This example shows an invariant point in the Al2O3-SiO2-H2O system involving pyrophyllite, diaspore, kaolinite, quartz and H2O. Triangular compatibility diagrams show changes in mineral assemblages from one field to the next. |
The (Qz), (Dsp) and (Py) reactions are all stable on one side of the invariant point only. This diagram, however, shows metastable extensions of those reactions into divariant fields. Consider the (Qz) reaction: it cannot be stable up and to the left of the invariant point because the reaction involves pyrophyllite, and pyrophyllite is not stable to the left of the (Ka)(H20) reaction. Note that the degenerate (Ka)(H20) reaction passes through the invariant point. Degenerate reaction often, but not always, are stable on both sides of an invariant point. |
Two examples demonstrating the Morey-Schreinemakers Rule. The assemblage kaolinite + quartz is limited to two sectors by the reactions (Py) and (Dsp). Pyrophyllite is stable over a full 180°, only being limited by the terminal reaction (Ka)(H2O). |
Two enantiomorphic forms of the same invariant point discussed above. The correct choice cannot be determined without additional knowledge beyond what the the reactions are. |
Perkin(HP/2012/11)による『Method of Schreinemakers−A Geometric Approach to Constructing Phase Diagrams』から |
A generic phase diagram with unspecified axes; the invariant point is marked in red, metastable extensions labeled in blue, relevant reactions noted on stable ends of univariant lines. Wikipedia(HP/2012/11)による『Schreinemaker's analysis』から |
Abstract For an n-component system at chemical equilibrium, an assemblage of n+2 phases is thermodynamically invariant, an assemblage of n+1 phases is univariant, and an assemblage of n phases is divariant. On a pressure-temperature diagram, an invariant point could occur only at some specific temperature and pressure; from this point there radiate n+2 univariant curves, and from each curve there emanate n+1 divariant regions. How these univariant curves and divariant regions are related to one another and how these relations reflect the relative compositions of the n+2 phases are the subjects of this paper; the treatment is based largely on the method discovered by F. A. H. Schreinemakers. Because each univariant reaction involves n+1 phases, one of the n+2 phases that occur at the invariant point is missing along this reaction line. The univariant line, therefore, can be uniquely identified by the missing phase; by convention this missing phase label is given in parentheses. This paper demonstrates that for any given univariant reaction, there exists a corresponding set of relations among the univariant curves. Thus, if in a ternary system the heterogeneous reaction A+B = C+D (phase E missing) is univariant, then on the p-T diagram the univariant curves bearing the labels (A) and (B) must occur on one side of the curve bearing the label (E), whereas the curves bearing the labels (C) and (D) must occur on the other side of curve (E). Because each univariant curve contains n+1 phases, any two univariant curves contain all the n+2 phases, barring compositional degeneracy. Knowledge of two nondegenerate univariant reactions in the system thus suffices to determine all the other univariant reactions and therefore the succession of univariant curves around the invariant point. When the succession of univariant curves is known, it is a simple matter to determine next the relative locations of the divariant assemblages on the p-T (pressure-temperature) diagram. The Schreinemakers method can be applied to systems containing any number of components. For both unary and binary systems, there is but one corresponding topological arrangement of the univariant curves; for ternary systems, there are three possible topological arrangements. The number of possible arrangements increases rapidly for systems beyond the ternary; however, all the possibilities can be readily enumerated by means of the "pencil theorem" of Schreinemakers, which is discussed in detail. An n-component system is degenerate if one or more of the associated univariant curves can be described by fewer than n components. Chemographically, this corresponds to the coincidence of phases (n=2,3,4, . . . ), colinearity of phases (n=3,4,5, . . . ), coplanarity of phases (n=4,5,6, . . . ) and so on. The phases participating in degenerate univariant reactions are the singular phases; those which do not participate are the indifferent phases. In a degenerate system, two or more univariant lines assume the same value of slope at the invariant point. If the indifferent phases are chemographically on opposite sides of the singular phases, the degenerate curves coincide stable to stable (so that fewer than n+2 univariant lines obtain); if the indifferent phases are on the same side of the singular phases, the degenerate curves coincide stable to metastable. All the possible cases of degeneracy for binary and ternary systems are described in this paper. The method of Schreinemakers is useful in analyzing petrologic problems. Thus, for a given mineralogical system, if only some of the n + 2 univariant curves about an invariant point have been determined experimentally or by calculation from available thermodynamic data, the application of the method enables one to compute approximately the remaining curves. Because the chemographic relations of the phases determine the sequence of univariant curves about the invariant point, the method is useful in evaluating the consistency of existing thermochemical data on minerals of known compositions. Even when no experimental or thermochemical data are available, knowledge of the chemical compositions of the phases alone often allows one to calculate and predict the relative p-T dispositions of mineral assemblages in specified chemical and mineralogical systems; such knowledge is frequently'helpful in the study of mineral paragenesis. Examples of the application of the Schreinemakers method to mineralogical systems are given. |
|
FIGURE 3. The Morey-Schreinemakers rule. The assemblage (n+1, n+2) must be stable in the smaller sector, for otherwise in the sector marked by the angle 6 this assemblage must be simultaneously stable and metastable. |
FIGURE 4. Two enantiomorphic forms of succession of univariant lines consistent with a given univariant scheme. The correct choice from the two forms for a given p-T diagram cannot be determined by the chemographic relations alone. |
FIGURE 5. The general geometric relations of the three univariant lines about the triple point in a one-component system. Two enantiomorphic forms are shown; both are consistent with the relations depicted in figure 6. |
FIGURE 6. Three isobaric G-T sections (lines) of the G-p-T surfaces of three polymorphs. A, At p=ps, the pressure of the triple point, the three lines intersect at a single point. B, At p = pb, slightly higher (or lower) than ps . C, At p = pc, slightly lower (or higher) than pa. In each diagram, the sequence of stable univariant and divariant assemblages with rising temperature is given by the lowest set of free-energy lines. Note labels refer to phases, not phases absent. |
FIGURE 9. The unique geometric relation of the four univariant lines about a given invariant (quadruple) point in a binary system. |
FIGURE 10. Derivation of the geometric relations of a binary system from that of a unary system. If aa', bb', and cc' are the three univariant lines of a unary system, the addition of a fourth line, dd', required by a binary system, necessarily results its opposite sector having two metastable extensions. Each of the two flanking sectors has one metastable extension. |
FIGURE 11. The p-T diagram in a ternary system where the five phases form a convex pentagon. A, The chemographic relations; B, the corresponding p-T diagram. Notice that the univariant curves follow in numerical sequence when the phases are labeled in diagonal sequence. |
FIGURE 12. The p-T diagram in a ternary system where four of the five phases form a quadrilateral and the fifth phase is an interior point. See also caption for figure 11. |
FIGURE 13. The p-T diagram in a ternary system where three of the five phases form a triangle and the remaining two points fall inside the triangle. See also caption for figure 11. |
FIGURE 14. Derivation of the three types of p-T diagrams for ternary systems from the unique configuration for a binary system. Addition of a fifth curve in the sectors labeled a, 6, or c results in figures 11, 12, or 13, respectively, by geometric considerations alone. |
Figure 15. Demonstration of the pencil theorem. Each stable line labeled PI, Pt, ..., represents a pencil of stable univariant lines which are not separated from one another by metastable extensions of other univariant lines. The total number of pencils is always odd. |
FIGURE 16. Four possible sets of degenerate relations in a binary, four-phase system. A heavy dot indicates that the composition point is shared by two or more phases. |
FIGURE 17. The p-T diagrams corresponding to the four sets of degenerate relations of figure 16; A refers to figure 16A and so forth. Lines with multilabels are degenerate, that is, each of them represents the coincidence of two univariant lines. The coincidence may be stable to stable (A and D) or stable to metastable (B and C), depending on whether the indifferent phases are on opposite sides or the same side, respectively, of the singular phases. In all cases, however, three distinct slope values obtain at the invariant point. |
|
FIGURE 18. The four possible sets of degenerate relations among the compositions of five phases in a ternary system (A-D) effected by the colinearity of three phases and their corresponding p-T diagram types (E-H). Note that five stable univariant lines obtain when the indifferent phases lie on the same side of the singular phases; four stable uni variant lines obtain when the indifferent phases lie on opposite sides of the singular phases. In all events, four distinct slope values obtain at the invariant |
|
FIGURE 19. The three possible sets of compositionally degenerate relations in ternary, five-phase systems effected by a single compositional coincidence (dimorphism) of two phases (A-C) and their corresponding p-T diagram types (D-F). Note that four stable lines obtain when the indifferent phases are on the same side of the singular phases; three stable lines obtain when the indifferent phases are on opposite sides of the singular phases. In all cases, three distinct slopes values obtain at the invariant point. On the p-T diagrams, only those phases are labeled whose identities, because of compositional coincidences, would otherwise be ambiguous. Heavy dots indicate phases with coincident compositions. |
FIGURE 20. The three possible sets of compositionally degenerate relations in ternary, five-phase systems each effected by two independent sets of three colinear phases (A-C), and their corresponding p-T diagram types (D-F). Depending on the chemographic relations of the indifferent and singular phases, five, four, or three stable univariant lines may obtain, but in all cases only three distinct slope values obtain at the invariant point. |
FIGURE 21. The three possible sets of compositionally degenerate relations in ternary, five-phase systems effected by the colinearity of three phases and a compositional coincidence of two phases (A-C), and their corresponding p-T diagram types (D-F). If the two degeneracies are coupled (A, B), three distinct slope values exist at the invariant point; if the two degeneracies are not coupled (C), only two distinct slope values exist at the invariant point. 20A and B correspond to the binary degeneracies of figures 17C only those phases are labeled whose identities, because of compositional coincidences, would otherwise be equivocal. Heavy dots indicate phases having coincident compositions. |
FIGURE 22. The single possible set of compositionally degenerate relations in ternary, five-phase systems effected by one compositional coincidence of three phases, and its corresponding p-T diagram type. Phases 4 and 5 are absolutely indifferent phases. On the p-T diagrams, only those phases are labeled whose identities, because of compositional coincidences, would otherwise be ambiguous. Heavy dots indicate phases with coincident compositions. |
FIGURE 23. The single possible set of compositionally degenerate relations in ternary, five-phase systems effected by two compositional coincidences of two phases each, and its corresponding p-T diagram type. Phase 5 is an absolutely indifferent phase. On the p-T diagram only those phases are labeled whose identities, because of compositional coincidences, would otherwise be equivocal. Heavy dots indicate phases with coincident compositions. |
FIGURE 24. The single possible set of compositionally degenerate relations in ternary, five-phase systems effected by the colinearity of four phases, and its corresponding p-T diagram type. The diagram is that of a binary four-phase system, with an absolutely indifferent fifth phase added. |
FIGURE 33. Schematic representation of Gibbs free-energy relations of the phases around an invariant point in a binary four-phase system. The metastable univariant lines are extended in full, but are shown as dashed lines. Each G-X plot is topologically correct for the entire sector as shown; the Gibbs free-energy values increase upward so that the straight lines connecting the lowest set of points depict the stable univariant or divariant assemblages. In each G-X plot, the successively higher lines connect univariant or divariant assemblages which are successively more metastable. Where two such lines cross, for instance between univariant curves (1) and (4), a etastable fourphase assemblage could form fortuitously; such an assemblage, however, is not invariant. |
|
Zen(1984)による『Construction of Pressure-Temperature Diagrams for Multicomponent Systems After the Method of Schreinemakers-A Geometric Approach』から |
熱水変質 |
変質作用とは、通常は熱水による変質作用を指す。主に天水による風化作用とは区別することが普通である。ただし、地下では地熱により地下水も温度が高く、温泉水(熱水)との区別が困難な場合が多い。従って、厳密には変成作用の非常に弱い場合との識別はできない。また、通常の温度勾配に起因する温度の高い条件下で、堆積物は堆積岩へと変化しており、その作用は続成作用と呼ばれているが、これも一般には変質作用に含めない。
鉱床は熱水の働きにより生成するものが多く、金属鉱床も非金属鉱床も周囲に変質帯が形成されることがあり、これは鉱床の成因に熱水変質作用が大きく関わっていることを意味している。
海洋底においては、海嶺や沈み込み帯やホットスポットなどの火成作用(地表近くでは火山作用)が生じている周辺で、大規模な変質作用が生じている。
Figure 11-1. Representative cross sections of alteration related to hydrothermal activity or fossil hydrothermal activity on the modern seafloor. A, Alteration mineralogy of a stockwork zone exposed by faulting on the Galapagos Rift after Ridley and others(1994). B, Alteration mineralogy at the TAG deposit Honnorez and others (1998). C, Alteration zonation at Pacmanus, Ocean Drilling Program (ODP) Leg 193, Manus Basin, Papua New Guinea (PNG) after Binns and others (2007). D, Middle Valley alteration zonation after Goodfellow and Peter (1994). [Ca, calcium; Fe, iron; K, potassium; Mg, magnesium; Na, sodium; ab, albite; anh, anhydrite; chl, chlorite; ct, calcite; mu, muscovite; py, pyrite; qtz, quartz; ru, rutile; sm, smectite] Figure 11-2. Representative examples of alteration zoning in volcanogenic massive sulfide deposits. A, Hydrothermal alteration in the Bathurst district after Goodfellow (2007). B, Alteration in the mafic, ophiolitic Turner-Albright, OR, deposit (Zierenberg and others, 1988) shows an alteration pattern related to replacement mineralization in a porous and permeable hyaloclastite pile with general similarities to alteration at TAG and the Galapagos Rift. C, Chisel Lake deposit in the Snow Lake district, Manitoba, where alteration has undergone mphibolite-grade regional metamorphism (Galley and others, 1993). D, Semi-conformable alteration zones (Hannington and others, 2003) that are clearly discordant to regional metamorphic isograds in the Blake River Group, Noranda volcanic complex, western Abitibi subprovince, Ontario. [Fe, iron; Mg, magnesium; Fm., formation] Shanks(2012)による『Hydrothermal Alteration』から |
図1 斑岩銅鉱床に伴う変質帯の構造 三箇(2009/10)による『資源探査における衛星リモートセンシング技術の進歩』から |