【概要】
核磁気共鳴(NMR)装置は、強い磁場の中に試料を置き、核スピンの向きを揃えた分子にパルス状のラジオ波を照射し、核磁気共鳴させた後、分子が元の安定状態に戻る際に発生する信号を検知して、分子構造などを解析する装置です。
一般的には、複雑な有機化合物の化学構造の決定(H、C、N などの結合状態、隣接原子との関係などが分かります)に用い、試料の有機化学物質を非破壊で測定できることが特徴です。また、最近では、NMR
イメージングが、MRI として医療分野で画像診断に欠かせない装置となっています。
1.NMR の特徴
核磁気共鳴(Nuclear Magnetic Resonance, NMR)装置は化合物の分子構造や物性の解析を行うことのできる装置です。構造だけでなく、分子間や分子内相互作用、分子の運動性など有用な情報が得られるため、生命科学、化学、医薬品・食品開発、材料科学といった幅広い分野で利用されています。
サンプルとしては溶液や固体、ゲル、エマルジョンなどが対象で、結晶化などの複雑な前処理は不要です。標準的な検出器を用いれば
60 以上の核種を測定する事ができ、同位体であっても共鳴周波数が異なるので容易に識別可能です。分子構造を原子核1個の分解能で観測できる一方、感度が低いのが欠点で、通常数
mg 程度のサンプル量が必要です。ラジオ波帯域の電磁波を使うことからNMR は非破壊・非侵襲的な測定でありNMR の原理を応用した
NMR イメージングは、磁気共鳴画像(MRI)として画像診断に欠かせないものになっています。
2.NMR の原理
核スピン量子数1が0でない原子核は磁気双極子モーメントを持ち、小さな磁石とみなすことができます。これを磁場中に置くと原子核はゼーマン分裂によって
2I+1個のエネルギー状態を取り、このエネルギー差に相当する電磁波(ラジオ波)に共鳴するようになります(図1)。
共鳴周波数は核種によって異なりますが、同一核種においてもそれぞれの原子核の置かれた化学的または磁気的環境に応じて差が生じます。これは化学シフトと呼ばれ、NMR
シグナルの化学シフトから化合物に含まれる官能基の種類を推定することができます(図2)。
3.NMR 装置の構成
NMR 装置は、磁場を発生させるための磁石、ラジオ波を作り出す高周波発生装置、サンプルの励起および NMR 信号の検出を行うプローブ、検出した
NMR 信号を増幅・検波する受信系で構成されます(図4)。
4.NMR の応用
5.さいごに |