Andersen,M.B., Erel,Y. and Bourdon,B.(2009): Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta, 73, 4124-4141.

『天然水の234U/238U に関連した花崗岩風化での234U−238U分別作用についての実験的証拠 』


Abstract
 The daughter to parent (234U/238U) activity ratio in natural waters is often out of secular radioactive equilibrium. The major reason for this disequilibrium is related to the energetic α-decay of 238U and differential release of 234U relative to 238U. This disequilibrium originates from (1) preferential release of more loosely bound 234U from damaged mineral lattice sites or; (2) direct recoil of 234Th into surrounding media from near mineral surface boundaries, however, it is unclear which of the two mechanism is most important in nature. To better quantify the effects of preferential release of 234U, two continuous laboratory granite leaching experiments conducted over 1100 h were performed. The leachates were characterized by declining U concentrations with time and (234U/238U) initially greater than unity (up to 1.15), which changed to below unity during leaching (〜0.95). The early elevated (234U/238U) suggests that additional 234U id released into solution by referential release of 234U from mineral phases. However, the excess 234U constitutes a finite pool of easy leachable 234U and the (234U/238U) values become lower than unity when this pool is used up. A model based on first-order kinetics, dissolution rates and preferential release of 234U from damaged lattice sites was developed and is able to quantitatively predict the observed pattern of (234U/238U) values and U concentrations for the two granite leaching experiments. Extending the modeling to longer time scales more comparable to natural systems shows that the production of waters with high (234U/238U) ratios can be achieved in two distinct regimes (1) slow weathering where the rate of directly recoiled 234U near mineral surfaces into waters is high; (2) fast weathering where the role of incipient chemical weathering and preferential release of loosely bound 234U are important. The model is able to explain apparent opposite correlations between physical erosion rates and (234U/238U) in waters and it provides a new framework that will be useful for examining weathering regimes, their timescales and their coupling with physical erosion.』

1. Introduction
2. Methods
3. Results
4. Discussion
 4.1. Mineral dissolution rates
 4.2. U concentration in the leachates
 4.3. (234U/238U) in the leachates
 4.4. Modeling of (234U/238U) ratios and U concentration during granitic leaching experiments
 4.5. 234U-238U disequilibrium in natural waters
5. Conclusive remarks
Acknowledgments
References


戻る