Banks & Frengstad(2006)による〔『Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites』(1337p)から〕

『ノルウェーの斜長岩における斜長石加水分解による地下水化学組成の進化』


Abstract
 The Precambrian Egersund anorthosites exhibit a wide range of groundwater chemical composition (pH 5.40-9.93, Ca2+ 1.5-41 mg/L, Na+ 12.3-103 mg/L). They also exhibit an evolutionary trend, culminating in high pH, Na-rich, low-Ca groundwaters, that is broadly representative of Norwegian crystalline bedrock aquifers in general. Simple PHREEQC modelling of monomineralic plagioclase-CO2-H2O systems demonstrates that the evolution of such waters can be explained solely by plagioclase weathering., coupled with calcite precipitation, without invoking cation exchange. Some degree of reaction in open CO2 systems seems necessary to generate the observed maximum solute concentrations, while subsequent system closure can be invoked to explain high observed pH values. Empirical data provide observations required or predicted by such a model: (i) the presence of secondary calcite in silicate aquifer systems, (ii) the buffering of pH at around 8.0-8.3 by calcite precipitation, (iii) significant soil gas CO2 concentrations (P CO2>10-2 atm) even in poorly vegetated sub-arctic catchments, and (iv) the eventual re-accumulation of calcium in highly evolved, high pH waters.』

要旨
 先カンブリア紀のエガーサンド斜長岩は、広い範囲の地下水化学組成を示す(pH 5.40〜9.93、Ca2+ 1.5〜41 mg/L、Na+ 12.3〜103 mg/L)。それらはまた、ノルウェーの一般的な結晶質基盤岩帯水層を大まかに代表する、高いpHのNaに富みCaに乏しい地下水に到達する発展の傾向を示す。単鉱物斜長石−CO2−H2O系の単純なPHREEQCモデル化から、そのような水の発展は、陽イオン交換を必要とせず、単に方解石の沈殿を伴う斜長石風化によって説明できることが示される。開いたCO2 系においてある程度の反応が、観察される最大溶質濃度を生み出すために必要と思われるが、それに続けて系を閉じることが、観察された高いpH値を説明するためには必要となる。経験的なデータは、そのようなモデルにより必要とされるか予測される観察結果を与える:(i)珪酸塩帯水層系における二次方解石の存在、(ii)方解石沈殿による8.0〜8.3辺りのpHへの緩衝作用、(iii)植生に乏しい亜寒帯流域においてさえ重要な土壌空気 CO2 濃度(P CO2>10-2気圧)、そして(iv)非常に発展した高いpHの水におけるカルシウムの最終的な再集積である。』

1. Introduction
2. The Egersund anorthosite aquifer system
3. Methods: sampling and analysis of groundwater and soil gas
 3.1. Sampling of Norwegian crystalline bedrock groundwaters
 3.2. Sampling of groundwaters from the Egersund Anorthosites
 3.3. Soil gas sampling
4. Results: groundwater chemistry and soil gas CO2
 4.1. Norwegian crystalline bedrock groundwaters: National study
 4.2. Groundwaters from Egersund anorthosites
 4.3. Soil gas determinations
5. Hydrochemical evolution of groundwater in anorthosite aquifers
 5.1. Early hydrochemical evolution
 5.2. Mature hydrochemical evolution
6. Hydrochemical modelling with PHREEQC
7. Results of modelling
 7.1. General characteristics
 7.2. Influence of feldspar composition
 7.3. CO2 conditions: closed systems
 7.4. CO2 conditions: open systems
 7.5. Influence of choice of alteration product
 7.6. Summary of modelling
8. Comparison with empirical data
 8.1. Concentration of CO2 in soil gas
 8.2. Norwegian bedrock groundwater data
 8.3. Further implications: empirical evidence from literature sources
9. Conclusions
Acknowledgments
References


戻る