Ziegler et al.(2005)による〔『Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands』(4597p)から〕

『ハワイ諸島の累進的な玄武岩風化の間におこるδ30Si 比の自然変動』


Abstract
 Silicon stable isotopes can be used to trace the biogeochemical pathways of Si as it moves from its continental sources to its sink in ocean sediments. Along the way, Si is incorporated into clay minerals, taken up by plants where it forms plant opal, and leached into rivers, the major land-to-ocean conduit. Compared to igneous rocks, the waters that drain continents are enriched in heavy Si isotopes, but the mechanisms that control fractionation have not been elucidated. We studied Si isotope fractionation along a 4 million yr basaltic soil chronosequence on the Hawaiian Islands. Using the natural context of these samples in combination with laboratory experiments, we demonstrate that the isotopic composition of dissolved Si in weathering systems is determined by the combined effects of rock disintegration, clay mineral neosynthesis, and Si biocycling. Weathering preferentially releases 28Si into solution, whereas secondary mineral formation preferentially removes 28Si from solution. In humid environments, leached soils have lost large amounts of this soluble Si, thus creating a net loss of 30Si from the entire soil system. As soils develop and greater fractions of Si reside in neoformed clay minerals, δ30Sibulk soil values change progressively toward more negative values; basalt δ30Si values are about -0.5‰, but older soils have δ30Si values up to -2.5‰. The difference between the solid and solution δ30Si values remains more or less constant with progressive weathering, and therefore, soil water from older soils has a more negative δ30Si composition. In the upper horizons of the Hawaiian soils, this weathering-driven δ30Si shift is modified by the addition of unweathered primary minerals via dust, carrying δ30Si values of about -0.5‰, and by biocycling of Si via plants, producing negative δ30Si values in phytoliths and positive δ30Si values in soil solutions derived from upper horizons. Due to the high concentrations of dissolved Si in these near-surface layers, rivers have more positive δ30Si values than predicted based on the weathering status of the lower horizons. When combined with published δ30Si values from large rivers worldwide, we find that the results from Hawaii point to weathering control of Si isotopes delivered to the oceans, and thus, to an important continent-ocean linkage that warrants further investigation.』

要旨
 ケイ素安定同位体は、それが海洋堆積物の貯留部に大陸の供給源から移動するときのSiの生物地球化学的通路を追跡するのに用いられる。その通路に沿って、Siは粘土鉱物に組み込まれ、植物オパールを形成する植物に取り込まれ、そして主要な陸から海への水路である河川水中に濾し取られる。火成岩と比べると、大陸を流れる水は重いSi同位体に富むが、分別作用をコントロールするメカニズムは解明されていない。我々は、ハワイ諸島の400万年前の玄武岩質土壌クロノシーケンスに沿ってSi同位体分別を研究した。実験室での実験と合わせてこれらの試料の天然での状況を用いて、風化系での溶存Siの同位体組成が、岩石の分解・粘土鉱物の新生・Siの生物循環が組み合わされた影響により決定されることを我々は示している。風化は優先的に28Siを溶液中に放出するが、二次鉱物の生成は優先的に28Siを溶液から取り除く。湿潤環境で、濾し取られた土壌は大量のこの可溶性Siを失っており、したがって全土壌系から正味の30Siの損失を生む。土壌が発達しSiの大きな割合が新生粘土鉱物に存在すると、δ30Sibulk soil 値はだんだんと負の値に変わる;玄武岩のδ30Si 値は約-0.5‰であるが、古い土壌は-2.5‰までのδ30Si 値をもつ。固体と溶液のδ30Si 値の差は、風化の進行とともにおよそ一定であり、したがって古い土壌からの土壌水はより負のδ30Si組成をもつ。ハワイの土壌の上部層では、この風化由来のδ30Siの変化は、約-0.5‰のδ30Siをもつ風塵経由の未風化一次鉱物の付加および、植物化石中の負のδ30Si 値と上部層由来の土壌溶液中の正のδ30Si値を生み出す植物経由のSiの生物循環により変えられている。このような表面近くの層中の溶存Siが高い濃度のため、下部層の風化状態に基づいて予測された値よりも河川水はさらに正のδ30Si 値をもつ。世界の大河川から報告されたδ30Si 値と合わせると、ハワイからの結果は、海洋に放出されるSi同位体の風化によるコントロールを指摘しており、したがってさらに調査が必要な大事な陸−海のつながりを示している。』

1. Introduction and background
2. Study site
3. Samples, methods, and experiments
 3.1. Natural samples and analysis
 3.2. Isotopic analyses
 3.3. Experiments
  3.3.1. Dissolution experiments
  3.3.2. Precipitation experiments
  3.3.3. Exchange experiments using 32Si tracer
4. Results and discussion
 4.1. Soil Si sources and mineral transformations
 4.2. δ30Si values of Hawaiian soils
 4.3. δ30Si values of dissolved Si
  4.3.1. Controls on δ30Si values of soil water
  4.3.2. δ30Si values of Hawaiian soil water
  4.3.3. Relationship between δ30Si values of Hawaiian soil water and river water
 4.4. Time-dependent soil Si flux and δ30Si signatures of weathering profiles
5. Implications and conclusions
Acknowledgments
References


戻る