Lyven(eの頭に´) et al.(2003)による〔『Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS』(3791p)から〕

『ICPMSと組合わせた流動視野流分別法を用いて評価した、鉄をベースとするコロイド状担体と炭素のそれの、淡水中での微量金属に対する競争』


Abstract
 Flow field-flow fractionation (FlFFF) coupled to an inductively coupled plasma mass spectrometer (ICPMS) has been used to determine the chemical composition of colloids from a freshwater sample as a function of size. Organic carbon and iron are the most abundant colloidal components, and are considered as the major carrier phases for other chemical elements present. The size distribution of organic carbon colloids shows a single peak with an estimated hydrodynamic diameter between 1 and 1.5 nm, while the iron colloids show a more complex distribution centred at larger colloid sizes with estimated hydrodynamic diameters up to 5 nm. The association of 32 trace elements with these two carrier colloids has been quantified by deconvolution analysis, and the resulting distributions are shown to be chemically consistent. The observed distributions are also shown to be broadly consistent with predictions from speciation modelling for the subset of 8 elements for which appropriate stability constants are available.』

『高周波誘導結合プラズマ質量分析計(ICPMS)と組み合わせた流動視野流分別法(FIFFF)が、大きさの関数として淡水試料からのコロイドの化学組成を決定するために使われた。有機炭素と鉄が最も豊富なコロイド成分で、存在する他の化学元素に対する主要な担体相と考えられる。有機炭素コロイドの粒径分布は、1〜1.5 nmと見積られた流体力学的直径をもつ単一ピークを示し、一方鉄コロイドは5nmまでと見積られた流体力学的直径をもつ大きなコロイド径に集中するもっと複雑な分布を示す。これらの2つの担体コロイドに伴う32微量元素がデコンボリューション分析により定量化され、その結果の分布は化学的に一致することが示されている。観察された分布はまた、適当な安定定数が有効な8元素の組合せについての種形成モデル化からの予想とだいたい一致することが示されている。』

1. Introduction
2.Experimental section
 2.1. Sampling and filtration
 2.2. Instrumental
 2.3. Elemental quantification
 2.4. Enriched isotope additions
 2.5. Size and molecular weight distributions
 2.6. Reagents
3. Results and discussion
 3.1. Elemental colloidal size distributions
 3.2. Estimating the fractionation between carbon and iron carrier phases
  3.2.1. Deconvolution analysis
  3.2.2. Retention time corresponding to the element's first FlFFF peak
  3.2.3. Peak area measured using a specific retention time as cut-off
  3.2.4. Comparison of the three approaches
 3.3. Fractionation between carbon and iron carrier phases: Discussion
 3.4. Speciation modelling
  3.4.1. Iron colloids
  3.4.2. Organic carbon colloids
  3.4.3. Metals
  3.4.4. Calculations
  3.4.5. Discussion
 3.5. Elemental colloid size distributions−Comparison with literature data
 3.6. Potential artefacts in the FlFFF separation
  3.6.1. Losses of material during analysis
  3.6.2. Aggregate formation and colloid adsorption during analysis
4. Conclusions
Acknowledgments
References


戻る