White et al.(2001)による〔『Differential rates of feldspar weathering in granitic regoliths』(847p)から〕

『花崗岩質レゴリスにおける長石風化の差別的速度』

【PanolaとDavis Runの花崗岩レゴリスについて、長石風化の深さによる変化を、反応速度定数・鉱物表面積・一次/二次透水係数などの変数を用いて、時間-深度コンピュータースプレッドシートモデル(time-depth computer spreadsheet model)により検討】


Abstract
 Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetics and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock.. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 × 10-17 to 2.8 × 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with time.
 Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (qp and qs), which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering. A secondary to primary hydraulic conductivity ratio of qs/qp = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, qs/qp = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run, is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate. In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability.』

要旨
 基盤岩と土壌環境で普通に観察される斜長石とカリ長石の差別的な速度が、化学カイネティックと溶解度コントロールおよび透水係数によって検討されている。米国南東部のジヨージア ピーモント地方のPanolaレゴリスに対して、元素のバランスおよび87Sr/86Sr比と結びついた岩石学的観察から、斜長石は花崗岩質基盤岩中の6m以深でカオリナイトに変換されることが示されている。カリ長石は基盤岩ではもとのままで残るが、その後、上を覆うサプロライトではカオリナイトに風化している。対照的に、バージニアのDavis Runのような、ピーモント地方の他の場所の花崗岩質基盤岩では、斜長石とカリ長石の両方が安定に残っており、上を覆う厚いサプロライト層においては長石は同時に風化している。カイネティック速度定数、鉱物表面積、および二次透水係数が、時間−深度コンピュータースプレッドシートモデルを用いて、PanolaおよびDavis Runのレゴリスにおいて深度に関する長石の損失(ロス)に対して適合されている。未風化の花崗岩への天水の浸透の速度を記述する一次透水係数は、風化フロントの伝播速度に等しいと仮定され、それは宇宙線源同位体年代に基づくと、Panolaレゴリスでは 7 m/100万年、Davis Runレゴリスでは 4 m/100万年である。最も適合した計算結果は、両方のレゴリスで斜長石に対するカイネティック速度定数はカリ長石よりも2〜3倍速く、実験結果と一致する。しかし、斜長石とカリ長石の速度の範囲(kr = 1.5 × 10-17 〜 2.8 × 10-16 mol/m2/秒)は、実験による長石溶解速度よりも3〜4桁小さく、天然の長石風化に対して今までに記録されている最も遅いものの中に入る。そのように遅い速度は、PanolaとDavis Runのレゴリスの地形の年代が比較的古いせいであり、鉱物表面の反応性が時間とともにかなり減少していることを意味している。
 透水性の低いPanola基盤岩環境の差別的な長石風化は、カイネティックな反応速度の差よりも、相対的な長石溶解度により依存する。そのような風化は一次および二次透水係数(qp および qs)に非常に敏感であり、これらはレゴリスを通過する流体体積と長石の熱力学的飽和度の両方をコントロールする。基盤岩の透水性は、主に粒子内部にあり、相互に連結した斜長石斑晶の網状組織の内部風化により生じる。サプロライトの透水性は、主に粒子間にあり、等積風化の間に珪酸塩相が溶解する結果である。Panola基盤岩におけるqs/qp = 150 という一次透水係数に対する二次透水係数の比は、カイネティックに斜長石溶解をコントロールするが、熱力学的にカリ長石反応を抑制することになる。この結果は、Panola花崗岩中で採取した地下水に対して計算された飽和状態と一致する。対照的に、Davis Runサプロライトにおける大きい二次透水係数は、qs/qp = 800、斜長石とカリ長石の溶解をともにカイネティックにコントロールすることになる。Davis RunではなくPanola花崗岩の基盤岩に風化を導いている斜長石の速い風化は、斜長石のアノーサイト成分が高いことと気候が湿潤で温暖であることが原因である。加えて、Panola花崗岩は、散在する異常に高い方解石成分をもち、その溶解は斜長石の風化フロントより先行し、したがって付加的な二次透水性を生む。』

1. Introduction
 Quantification of silicate weathering rates has important implications in a diverse range of geochemical issues. Among them are rates of neutralization of acid precipitation via silicate hydrolysis reactions (Stauffer, 1990), the rates of release of macronutrients such as K and Ca in forested catchments (Huntington et al., 2000), and the linkage between weathering rates and CO2 draw-down and long-term climate change (Berner and Berner, 1997). Toward addressing these issues, extensive efforts have been directed at determining reaction mechanisms and rates of plagioclase and K-feldspar weathering, two of the most common minerals present in crystalline protoliths (Blum and Stillings, 1995, and references therein).
 Despite these efforts, discrepancies remain between laboratory and field findings. Commonly, estimated field weathering rates of feldspar are two to four orders of magnitude slower than laboratory dissolution rates (Brantley, 1992; White et al., 1996). In addition, laboratory reaction rates for sodic plagioclase are only a factor of two to three times faster than K-feldspar rates at near-neutral pHs (Blum and Stillings, 1995 and references therein). These data contradict commonly observed field situations in which plagioclase feldspar exhibits more intense weathering features and is significantly depleted in regoliths relative to K-feldspar (Banfield and Eggleton, 1990; Nesbitt et al., 1997). Possible reasons for differences in both relative and absolute rates of feldspar weathering include differences in physical and reactive surface areas and defect densities (White and Peterson, 1990; Brantley et al., 1999), impacts of aqueous chemical species and concentrations on reaction affinities (Burch et al., 1993; Oelkers et al., 1994), and the role of hydrology in determining mineral surface wetting and solute transport (Swodoba-Colberg and Drever, 1992; Clow and Drever, 1996).
 The present study addresses how differing weathering environments control natural feldspar weathering rates in granitic regoliths. The work focuses on well-characterized weathering profiles consisting of thick soil-saprolite sequences developed on crystalline bedrock in the Piedmont Province of southeastern United States (Gardner, 1980; Calvert et al., 1980; Pavich, 1986; Cleaves, 1993). These regoliths are geomorphically old (>105 yr), are developed in situ from granitic bedrock, and have undergone isovolumetric weathering involving significant mass losses. These features make for long-term steady-state conditions optimal for characterizing chemical weathering. Detailed elemental and 87Sr/86Sr distributions and petrologic data are presented for the Panola regolith in Georgia. Mass balance calculations are used to construct plagioclase and K-feldspar distributions in the Panola regolith that are then compared with significantly different feldspar distributions in other Piedmont regoliths. Feldspar saturation states are determined on the basis of pore and groundwater chemical compositions. Finally, a spreadsheet model is presented that uses kinetic rate constants, surface areas, and primary and secondary fluid conductivities to explain both absolute and relative differences in plagioclase and K-feldspar weathering rates.』

2. Field setting and methodologies
3. Results
 3.1. Isovolumetric weathering
 3.2. Elemental distributions and mobilities
 3.3. Mineral distributions and weathering
 3.4. Sr and 87Sr/86Sr distributions
 3.5. Water compositions and the thermodynamic saturation of feldspars
 3.6. Comparison of feldspar weathering in similar granitic regoliths
4. Discussion
 4.1. Primary and secondary hydraulic conductivities
 4.2. Mass and solubility controls
 4.3. Kinetic controls
 4.4. Fitting the model to the feldspar weathering in the Panola regolith
 4.5. Fitting the model to the feldspar weathering in the Davis Run regolith
 4.6. Comparing feldspar weathering rates
 4.7. Differences in weathering environments
 4.8. Generalized weathering regimens
5. Conclusions
Acknowledgments
References


戻る