Baslle-Doelsch,I., Meunier,J.D. and Parron,C.(2005): Another continental pool in the terrestrial silicon cycle. Nature, 433, 399-402.

『陸域ケイ素循環におけるもう一つの陸のプール』


(Abstract)
 Silicon is the second most abundant element on Earth. It is an important nutrient for phytoplankton and is readily absorbed by terrestrial vegetation; it also assists the removal of carbon dioxide from the atmosphere through the weathering of silicates. But the continental cycle of silicon is not well known, and only a few studies have attempted to use silicon stable isotopes (28Si, 29Si and 30Si) to quantify the continental silicon reservoirs. Dissolved silicon in sea and river waters forms a reservoir of mean isotopic value +1.1‰ (refs 7, 10). It is enriched in 30Si with respect to the igneous rocks reservoir, which has a mean isotopic value of -0.3‰ (refs 4, 9). This enrichment can only be produced by a major fractionation during weathering, and should result in the formation of a continental 30Si-depleted reservoir. Such a reservoir, however, has not been identified to date. Here we analyse silicon isotopes of in situ quartz from a sandstone series in France, using a new-generation secondary ion mass spectrometry apparatus. We show that quartz that precipitates as siliceous cements forms a strongly 30Si-depleted reservoir with isotopic values down to -5.7‰, a more negative value than any previously published for terrestrial samples. Our findings suggest that quartz re-precipitation plays an important role in the biogeochemical cycle of silicon.』

(要旨)
 ケイ素は地球で2番目に多い元素である。それは植物プランクトンにとって重要な栄養分であり、陸上植物により容易に吸収される;また珪酸塩の風化をとおして大気からの二酸化炭素の除去を促進している。しかしケイ素の大陸での循環は十分には分かっておらず、大陸のケイ素リザーバを定量化するためのケイ素安定同位体(28Si、29Si、30Si)を使用した研究はほんわずかしか試みられていない。海水と河川水中の溶存ケイ素は平均同位体値+1.1‰(refs 7, 10)をもつリザーバを形成している。火成岩リザーバでは30Siに富み、平均同位体値は−0.3‰(refs 4, 9)である。この濃縮は風化中の主要な分別作用によってのみもたらせれ、30Siが減損した大陸リザーバを形成するに違いない。しかし、そのようなリザーバは今まで確認されていない。ここで我々は、フランスの砂岩系統からの現位置の石英について、新世代型二次イオン質量分析装置を用いて、ケイ素同位体の分析を行っている。ケイ質セメント(膠結物)として沈殿する石英は、陸上試料について従来報告されたどれよりも大きな負の値である−5.7‰という同位体値をもつ、強く30Siに減損したリザーバを形成することを、我々は示している。我々の発見は、石英の再沈殿はケイ素の生物地球化学循環で大事な役割を果たすことを示している。』

(Text)
Methods
 Mean river water isotopic value
 Notation of isotopic data
 SIMS measurements
(References)
Acknowledgements

陸域環境におけるケイ素の生物地球化学循環(参考文献24から作成)。D、溶解;P、沈殿;T、輸送;E、後成;Up、取込み;De、死。δ30Siの範囲は以下からとられている:内因的岩石(4と本研究);土壌溶液;植物オパール;新生粘土;土壌および地下水でのケイ(珪酸)化作用(本研究);地下水(本研究と13);河川水;浮遊粒状物質。矢印につけられた数字はTモル(1012モル/年)単位のフラックスを示す(29と30)。

〔Baslle-Doelsch,I., Meunier,J.D. and Parron,C.(2005): Another continental pool in the terrestrial silicon cycle. Nature, 433, 399-402.の401pから〕

  1. Ragueneau, O. et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26, 317-365
    (2000).
  2. Alexandre, A., Meunier, J. D., Colin, F. & Koud, J. M. Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim. Cosmochim. Acta 61, 677-682 (1997).
  3. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544-546 (1997).
  4. Douthitt, C. B. The geochemistry of the stable isotopes of silicon. Geochim. Cosmochim. Acta 46, 1449-1458 (1982).
  5. De La Rocha, C. L., Breszinski, M. A. & DeNiro, M. J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Acta 61, 5051-5056 (1997).
  6. De La Rocha, C. L., Brezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680-683 (1998).
  7. De La Rocha, C. L., Brezinski, M. A. & DeNiro, M. J. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64, 2467-2477 (2000).
  8. De La Rocha, C. L. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31, 423-426 (2003).
  9. Ding, T. et al. Silicon Isotope Geochemistry (Geological Publishing House, Beijing, 1996).
  10. Ding, T., Wan, D., Wang, C. & Zhang, F. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim. Cosmochim. Acta 68, 205-216 (2004).
  11. Ziegler, K., Chadwick, O. A., Kelly, E. F., Brezinski, M. A. & DeNiro, M. in Goldschmidt Conference 1135 (Cambridge Publication, Oxford, 2000).
  12. Ziegler, K., Chadwick, O. A., Kelly, E. F. & Brezinski, M. A. in 6th Int. Symp. on the Geochemistry of the Earth's Surface 103-106 (University of Hawaii, Honolulu, 2002).
  13. Ziegler, K., Chadwick, O. A., Kelly, E. F. & Brezinski, M. A. Goldschmidt Conference, Geochim. Cosmochim. Acta 66(S1), abstract A881 (2002).
  14. Arakel, A. V., Jacobson, G., Salehi,M. & Hill, C. M. Silicification of the calcrete in paleodrainage basins of Australian arid zone. Aust. J. Earth Sci. 36, 73-89 (1989).
  15. Nash, D. J. & Shaw, P. A. Silica and carbonate relationships in silcrete-calcrete intergrade duricrusts from the Kalahari of Botswana and Namibia. J. Afr. Earth Sci. 27, 11-25 (1998).
  16. Abdel-Wahab, A., Salem, A. M. K. & Mcbride, E. F. Quartz cement of meteoric origin in silcrete and nonsilcrete sandstones, Lower Carboniferous, western Sinai, Egypt. J. Afr. Earth Sci. 27, 277-290 (1998).
  17. Thiry, M. & Simon-Coincon(後ろのcはセディーユ付), R. Tertiary paleoweatherings and silcretes in the southern Paris Basin. Catena 26, 1-26 (1996).
  18. Chadwick, O., Hendricks, D. M. & Nettleton, W. D. Silicification of Holocene soils in northern Monitor Valley, Nevada. Soil Soc. Am. 53, 159-164 (1989).
  19. Elsass, F., Dubroeucq, D. & Thiry,M. Diagenesis of silica minerals from clay minerals in volcanic soils of Mexico. Clay Miner. 35, 477-489 (2000).
  20. Khalaf, F. I. Petrography and diagenesis of silcrete from Kuwait, Arabian Gulf. J. Sedim. Petrol. 58, 1014-1022 (1988).
  21. Parron, C., Nahon, D., Fritz, B., Paquet, H. & Millot, G. Desilicification(eの頭に´) et quartzification par alteration(eの頭に´) des gres(eの頭に`) albiens du Gard. Modeles(最初のeの頭に`) geochimiques(最初のeの頭に´) de la genese(2番目のeの頭に`) des dalles quartzitiques et silcretes(最初のeの頭に`). Sci. Geol. Bull. 29, 273-284 (1976).
  22. Parron, C. & Guendon, J. L. Les alterites(最初のeの頭に´) mediocretacees(最後のe以外の頭に´) de Provence (bauxites et ocres): caracteres(最初のeの頭に`) et relations paleogeographiques(最後のe以外の頭に´). Geol(eの頭に´). Fr. 2, 137-150 (1985).
  23. Thiry,M. in Soils and Sediments: Mineralogy and Geochemistry (eds Paquet, H. & Clauer, N.) 191-221(Springer, Berlin, 1997).
  24. Dove, P. M. in Chemical Weathering Rates of Silica Minerals (eds White, A. F.& Brantley, S. L.) 235-290 (Reviews in Mineralogy, Mineralogical Society of America, Washington DC, 1996).
  25. Girard, J.-P., Freyssinet, P. & Chazot, G. Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated study from Yaou, French Guiana. Geochim. Cosmochim. Acta 64, 409-426 (2000).
  26. Molini-Vesko, C., Mayeda, T. K. & Clayton, R. N. Isotopic composition of silicon in meteorites. Geochim. Cosmochim. Acta 50, 2719-2726 (1986).
  27. Zinner, E. in New Frontiers in Stable Isotope Research: Laser Probes, Ion Probes, and Small-sample Analysis (eds Shanks, W. C. III & Criss, R. E.) 145-162 (Bulletin 1890, USGS, Denver, 1989).
  28. McKeegan, K. D., Walker, R. M. & Zinner, E. Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta 49, 1971-1987 (1985).
  29. Conley, D. J. Terrestrial ecosystems and the global biogeochemical cycle. Glob. Biogeochem. Cycles 16, doi: 10.1029/2002GB001894 (2002).
  30. Treエguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375-379 (1995).


戻る