Kovar,J.L. and Pierzynski,G.M.(eds.)(2009): Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters Second Edition.(またはこちら) Southern Cooperative Series Bulletin No. 408, 131p.

『土壌と堆積物と残留物と水のリン分析法 第2版』


ABSTRACT

The relative contribution of phosphorus (P) from agricultural nonpoint sources to surface water quality problems has increased in recent years as point sources of P have been reduced significantly. Phosphorus contributes to eutrophication, a process characterized by increased growth of undesirable algae and aquatic weeds, followed by oxygen shortages as the biomass decomposes. Eutrophication restricts water use for fisheries, recreation, industry, and human consumption. The focus of attention on P has increased the demand for information on methods of analysis of soil, water, and residual materials for environmentally relevant forms of P. The purpose of this publication is to present these methods in a single document. Previously, the methods have appeared across a wide variety of documents or only in the scientific literature. It is not the intent of this publication to define a uniform set of recommended methods for agronomic soils tests or for testing water and residual materials. The methods presented in this manual are intended solely to provide a set of uniform testing methods for environmental scientists working across an enormous range of soil and climatic conditions, with the hope that comparable methods may lead to improved communication and understanding of this complex issue.


FOREWORD

 As scientists focus on the fate of phosphorus applied to agricultural lands, it has become increasingly clear that a uniform set of testing methods is needed to enable comparison of results across county, state, regional, and even national boundaries.
 By contrast, soil testing developed with a high priority on meeting local needs. As a result, many local variations in extractants and laboratory procedures have been developed to achieve timely analysis and improved correlation of soil test results with plant responses within well-defined regions. Over time, enormous amounts of information on individual soils, crops, and extractants have been collected using these localized modifications and laboratory methods. Soil testing labs cannot easily change from one extractant to another. The cost of repeating the calibration experiments for many soils and crops is prohibitively expensive, and the changes would initially preclude users from comparing results across years. Even so, a set of standard reference methods can be useful for laboratories wishing to consider a new analysis for a particular element, and for comparing results across laboratories. In 1992, SERA-IEG-6 selected 15 reference procedures for soil testing laboratories in the southern region. Criteria for selection included the accuracy of the method in predicting crop responses, and general acceptability by workers in the soil testing field.
 This publication in no way attempts to define a uniform set of recommended methods for agronomic soil tests. The methods presented here are intended solely to provide a set of uniform testing methods for environmental scientists working across an enormous range of soil and climatic conditions, with the hope that comparable methods may lead to improved communication and understanding of this complex issue.
 For more information on agronomic soil testing methods, and the source of many of the procedures described here, the reader should refer to recent bulletins compiled by the various regional committees working on nutrient analysis of soils, plants, water, and waste materials (SERA-IEG-6, NCERA-13 and NEC-67). More detailed information on analysis of animal manures can be found in the publication “Recommended Methods for Manure Analysis . A3769” (www.sera17.ext.vt.edu/Documents/Recommended_Methods_Manure_Analysis.pdf).

FOREWORD FOR SECOND EDITION

 During the eight years since the original publication became available, the authors of many of the chapters in the manual learned that some editing, and in some cases clarification, was needed. The development of this 2nd Edition presented that opportunity. This publication now consists of 22 chapters, three of which are new.


TABLE OF CONTENTS

Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters: Introduction....................................................................................1
Gary M. Pierzynski, Kansas State University/Andrew N. Sharpley, University of Arkansas/John L. Kovar, USDA-ARS, Ames, IA

SOIL...............................................................................................................5【表1
Soil Sample Collection, Handling, Preparation, and Storage..................6
Frank J. Coale, University of Maryland
Soil Test Phosphorus: Principles and Methods........................................9
J. Thomas Sims, University of Delaware
A Phosphorus Sorption Index....................................................................20
J. Thomas Sims, University of Delaware
Water- or Dilute Salt-Extractable Phosphorus in Soil............................22
M.L. Self-Davis, University of Arkansas/P.A. Moore, Jr., USDA-ARS, Fayetteville, AR/B.C. Joern, Purdue University
Phosphorus Extraction with Iron Oxide-Impregnated Filter Paper (Pi test)...............................................................................................................25
W. J. Chardon, Alterra, Wageningen UR. Wageningen, The Netherlands
Determination of the Degree of Phosphate Saturation in Noncalcareous Soils...............................................................................................................29
O.F. Schoumans, Alterra, Wageningen UR. Wageningen, The Netherlands
Phosphorus Sorption Isotherm Determination........................................33
D.A. Graetz, University of Florida/V.D. Nair, University of Florida
Bioavailable Phosphorus in Soil................................................................38
Andrew N. Sharpley, University of Arkansas
Total Phosphorus in Soil............................................................................44
April Leytem, USDA-ARS, Northwest Irrigation and Soils Research Laboratory/Kokoasse Kpomblekou-A, Tuskegee University
Fractionation of Soil Phosphorus..............................................................50【図1】【図2
Hailin Zhang, Oklahoma State University/John L. Kovar, USDA-ARS National Soil Tilth Laboratory/
Procedures (see flow chart, Fig.2)
Phosphorus Fractionation in Flooded Soils and Sediments...................61
Philip Moore, USDA-ARS, Fayetteville, AR/Frank Coale, University of Maryland

RESIDUAL MATERIALS AND MANURES.........................................72
Sampling Techniques for Nutrient Analysis of Animal Manures..........73
R.O. Maguire and S.C. Hodges, Virginia Tech University/D.A. Crouse, North Carolina State University
Water-Extractable Phosphorus in Animal Manure and Biosolids........76
Ann M. Wolf, Pennsylvania State University/Philip A. Moore, Jr., USDA-ARS, Fayetteville, AR/Peter J.A. Kleinman, USDA-ARS, University Park, PA/Dan M. Sullivan, Oregon State University
Total Phosphorus in Residual Materials..................................................81
M.R. Bender, St. Cloud State University/C.W. Wood, Auburn University
Bioactive Phosphorus Fractions in Animal Manure, Soil, and Extracts of Soils and Manures..................................................................................87
Phosphorus Speciation in Soils and Manures by Solution 31P NMR Spectroscopy................................................................................................95【表1
Benjamin L. Turner, Smithsonian Tropical Research Institute, Republic of Panama/April B. Leytem, USDA-ARS, Kimberly, ID

WATER.....................................................................................................101
Water Sample Collection, Handling, Preparation and Storage...........102【図1
P.M. Haygarth, North Wyke, Okehampton, England/A.C. Edwards, Nether Backhill, Ardallie, By Peterhead, Scotland
Dissolved Phosphorus in Water Samples...............................................110
D.H. Pote, USDA-ARS, Booneville, AR/T.C. Daniel, University of Arkansas
Total Phosphorus and Total Dissolved Phosphorus in Water Samples.....................................................................................................................113
D.H. Pote, USDA-ARS, Booneville, AR/T.C. Daniel and P.B. DeLaune, University of Arkansas
Using the Iron Oxide Method to Estimate Bioavailable Phosphorus in Runoff.........................................................................................................118
R.G. Myers, Kansas State University/G.M. Pierzynski, Kansas State University



表1 流出水と排出水のリンの形態についての用語の標準化案

リンの形態

略称

分析法の例*
全リン
 溶存相および粒子状相の全量
TP 濾過してない水試料の温浸
→Kjeldahl法、または
→ペルオキソ二硫酸アンモニウム〔ammonium persulfate、過硫酸アンモニウム、(NH4)2S2O8〕酸性
全溶存リン
 溶存無機リン(オルトP)および溶存有機リン
TDP 濾過試料の酸性過硫酸温浸
正リン酸塩(オルトリン酸塩、orthophosphate) Ortho P イオンクロマトグラフィー
溶存反応性正リン酸塩
 藻類が直接利用できるリン、およびおよそ0.45μm以下で容易に変化する有機質およびコロイド質リンも含まれる可能性あり
DRP Murphy & Riley
濾過試料の比色(colorimetric)分析またはICP分析
生物が利用可能なリン酸塩
 溶存オルトP、および藻類が利用可能な粒子状リンの一部
BAP 濾過してない試料の以下の抽出:
→NaOH
→Cl-飽和陰イオン交換樹脂
→フッ化アンモニウム(ammonium fluoride)
→鉄酸化物フィルター紙片
モリブデン酸反応性リン
 溶存オルトP、および酸抽出可能な粒子状リン(たぶん藻類が利用可能)
MRP Murphy & Riley
濾過してない試料の比色分析
粒子状リン
 浸食された堆積物に伴うか結合した無機と有機のリン
PP 全リンと全溶存リンの差(TP−TDP)
溶存有機リン**
 ポリリン酸塩(polyphosphate)および加水分解可能なリン酸塩を含む
DOP 全溶存リンと溶存反応性正リン酸塩の差(TDP−DRP)
* 適切に用いることができるすべての方法を示している訳ではない。濾過試料は0.45μm孔径のフィルターを通過したものとして定義される。
** 溶存有機リンが全溶存リンの25%以上であれば、ポリリン酸塩および加水分解可能なリン酸塩を測定する必要があるだろう。


図1 無機リンについての連続分画法(元は図)

非石灰質土壌
 

石灰質土壌
100 mLの遠心分離管に土壌試料1.0 g 100 mLの遠心分離管に土壌試料1.0 g

50 mLの1M NH4Clを加え、30分間振とう、遠心分離

A

可溶性でゆるく結合したP

A
50 mLの0.1M NaOH+1M NaClを加え、17時間攪拌、遠心分離、飽和NaClで洗浄

残渣
 
50 mLの0.5M NH4Fを加え、1時間振とう、遠心分離、飽和NaClで洗浄

B

Al-P

A

残渣
 
50 mLの0.1M NaOHを加え、17時間振とう、遠心分離、洗浄

C

Fe-P

A

残渣
 

残渣
40 mLの0.3M Na3C6H5O7・2H2O(クエン酸ナトリウム)と5 mLの1M NaHCO3(炭酸水素ナトリウム)と1.0 gのNa2S2O4(亜ジチオン酸)を加え、.加熱、攪拌、加熱、遠心分離、洗浄

D

還元剤で可溶なP

B
40 mLの0.3M Na3C6H5O7・2H2O(クエン酸ナトリウム)と5 mLの1M NaHCO3(炭酸水素ナトリウム)と1.0 gのNa2S2O4(亜ジチオン酸)を加え、.加熱、攪拌、加熱、遠心分離、洗浄

残渣
 

残渣
50 mLの0.25M H2SO4を加え、1時間振とう、遠心分離、洗浄

E

Ca-P

C
50 mLの0.5M HClを加え、1時間振とう、遠心分離、洗浄

図2 有機リンについての連続分画法(元は図)
100 mLの遠心分離管に湿った土壌試料1.0 g(オーブンで乾燥)   100 mLの遠心分離管に湿った土壌試料1.0 g(オーブンで乾燥)

2 mLのCHCl3(クロロホルム)(微生物細胞の分解)
50 mLの0.5M NaHCO3(炭酸水素ナトリウム)を加え、16時間振とう、遠心分離、濾過

分液

不安定なPi
 

分液

過硫酸温浸

50 mLの0.5M NaHCO3(炭酸水素ナトリウム)を加え、16時間振とう、遠心分離、濾過

残渣
 

 

不安定なPの総量

不安定なPo=不安定なPの総量−不安定なPi
バイオマスPo=全PCHCl3−不安定なPの総量

50 mLの1.0M HCl(塩酸)を加え、3時間振とう、遠心分離、濾過

分液

適度に不安定なPi

分液

過硫酸温浸

全P

適度に不安定なPo=全P−Pi

残渣
   
脱イオン水で5分間すすぎ洗い、遠心分離

上澄み液廃棄
 

残渣
 
50 mLの0.5M NaOH(水酸化ナトリウム)を加え、6時間振とう、遠心分離、濾過

分液

過硫酸温浸

全P

分液
pH 1.0-1.5に酸性化、遠心分離

分液

過硫酸温浸
   

フルボ酸Po

フミン酸Po=全P−フルボ酸Po

脱イオン水で5分間すすぎ洗い、遠心分離

上澄み液廃棄
 

残渣
 
550℃で灰化1時間

50 mLの1.0M H2SO4(硫酸)を加えて溶解、振とう24時間

不安定でないPo


表1.pH>13で抽出された土壌と肥やしの溶液31P NMR(核磁気共鳴)スペクトルのシグナルの割当

官能基または化合物

シグナル

含まれる化合物
Phosphonates〔ホスホン酸、C-PO(OH)2またはC-PO(OR)2(R=alkyl, aryl)〕 18〜22 ppm 2-aminoethylphosphonic acid(2-AEP、NH2-
CH2CH2PO(OH)2
Phosphate(リン酸塩) 6.1 ppm 無機オルトリン酸塩(orthophosphate)
Phosphate monoesters(リン酸一エステル) 3.0〜6.0 ppm
6.8 ppm
myo-inositol hexakisphosphate(4.6, 4.8, 5.0, 5.9 ppm)(ミオイオノシトール六リン酸、フィターゼ、phytase)、scyllo-inositol hexakisphosphate(4.2 ppm)、その他のイノシトールリン酸、糖リン酸(sygar phosphates)、モノヌクレオチド(mononucleotides) 
Phosphate diesters(リン酸ニエステル) -1.0〜2.5 ppm DNA(-0.5 ppm)、リン脂質(0.5〜2.0 ppm)(phospholipids)、RNA(0.5 ppm)
Pyrophosphate(ピロリン酸塩、ニリン酸塩、diphosphate、P2O74- -4.4 ppm  
Polyphosphate(ポリリン酸塩、PnO3n+1(n+2)- -4.0 ppm(端グループ)
-18〜-23 ppm(中間グループ)
長鎖ポリリン酸塩(long-chain polyphosphate)
Organic polyphosphates -4.3 ppm(γ-リン酸塩)
-9.7 ppm(α-リン酸塩)
-19.7 ppm(β-リン酸塩)
アデノシン二リン酸塩(adenosine diphosphate)、アデノシン三リン酸塩(adenosine triphosphate)


図1 水試料中のリンの操作上定義された形態(CNA=セルロース−ニトレート−アセテート、ICP=誘導結合プラズマ)(元は図、一部修正)

水試料中のリン

孔径0.45μmのCNAメンブレンフィルターで濾過

モリブデン酸−青反応Murphy and Riley,1962にならった)

温浸の適切な手法ICPのような手法)

濾過してない反応性P
RPunf

濾過した(<0.45μm)反応性P
RP<0.45μm

濾過した(<0.45μm)全P
TP<0.45μm

濾過してない全P
TPunf

差による計算

反応性P(>0.45)=RPunf−RP<0.45μm
非反応性P(<0.45)=TP<0.45μm−RP<0.45μm
全P(>0.45)=TPunf−TP<0.45μm
非反応性P(>0.45)=全P(>0.45)−反応性P(>0.45)


ホーム