Compton,J., Mallinson,D., Glenn,C.R., Filippelli,G., Follmi(oの頭に¨),K., Shields,G. and Zanin,Y.(2000): Variations in the global phosphorus cycle. Marine Authigenesis: From Global to Microbial, SEPM Special Publication No.66, 21-33.

『世界のリン循環の変動』


Abstract
 Phosphorus is a critical element in the biosphere, limiting biological productivity and thus modulating the global carbon cycle and climate. Fluxes of the global phosphorus cycle remain poorly constrained. The prehuman reactive phosphorus flux to the ocean is estimated to range from 0.7-4.8×1012 g/yr. Uncertainty in the reactive phosphorus flux hinges primarily on the uncertain fate of phosphate adsorbed to iron oxyhydroxide particles which are estimated to constitute 50% or more of the chemically weathered-phosphorus river flux.
 Most reactive phosphorus is initially removed from seawater by burial of organic matter and by scavenging onto iron-manganese oxide particles derived from mid-ocean ridge (MOR) hydrothermal activity. Calculation of the oceanic phosphorus burial flux is complicated by early diagenetic redistribution of both oceanic and terrestrial phosphorus. Increased phosphorus input during periods of warm, humid climate is offset to some degree by increased burial rate as productivity shifts to expand shallow-water estuary and shelf areas where phosphorus is rapidly decoupled from organic matter to form phosphorite. Phosphorus scavenging is greater if high sea levels are associated with increased MOR hydrothermal activity such as during the Late Cretaceous. Less phosphorus is derived from weathering during cool, dry climatic periods but a more direct transportation of phosphorus to the deep ocean, and a shift of productive upwelling regions to deeper water areas allows more phosphorus to be recycled in the water column. Lowered sea level results in less effective trapping of phosphorus in constricted estuary and shelf areas and in an increase in the phosphorus flux to the deep ocean from sediment resuspension. A decrease in MOR spreading rates and the resulting decrease in phosphorus scavenging by iron-manganese oxide particles would result in more phosphorus for the biosphere. Orogeny and glaciation may accelerate chemical weathering of phosphorus from the continents when the increased particle flux is exposed to warm and humid climate. Large, reworked phosphorite deposits may proxy for short-term organic carbon burial and correspond to periods of increased reactive phosphorus input that cannot be accommodated by long-term organic matter and iron-oxide particulate burial.』

Introduction
The global phosphorus cycle
 Weathering sources of phosphorus to the ocean
  Dissolved inorganic phosphorus
  Dissolved organic phosphorus
  Particulate organic phosphorus
  Particulate inorganic phosphorus
  Eolian flux
  Prehuman phosphorus input
  Present-day phosphorus input
  Chemical weathering
 Reflux of phosphorus from sediments to seawater
 Role of estuaries
 Oceanic sinks of phosphorus
 Diagenetic redistribution of buried phosphorus
Discussion
 Glacial/interglacial variations
 Variations on geologic (>1 m.y.) time scales
 Phosphorite giants
Summary
Acknowledgments
References

表1A 先史時代のリンの海洋へのフラックスのまとめ
(×1012g/年=100万トン/年)
 DIP 0.3-0.5
 DOP 0.2(最大)
 POP(0.5は土壌由来;0.4は頁岩由来) 0.9(最大)
 PIP、鉄に結合(鉄−マンガン酸化物/オキシ水酸化物に吸着したリン) 1.5-3.0
 PIP、砕屑性 6.9-12.2
河川によるリンの合計 9.8-16.8
風成(大気による)リン 1.0(20%は反応性)
河川によるリンと風成リンの合計のフラックス

10.8-17.8
先史時代の可能性のある反応性リンの合計のフラックス(DIP+DOP+POP+鉄結合PIP+風成反応性P) 3.1-4.8

表1B 現在のリンの海洋へのフラックスのまとめ
(×1012g/年=100万トン/年)
 DIP 0.8-1.4
 DOP 0.2(平均)
 POP(0.5は土壌由来;0.4は頁岩由来) 0.9(平均)
 PIP、鉄に結合(鉄−マンガン酸化物/オキシ水酸化物に吸着したリン) 1.3-7.4
 PIP、砕屑性 14.5-20.5
河川によるリンの合計 17.7-30.4
風成(大気による)リン 1.05(20%は反応性)
河川によるリンと風成リンの合計のフラックス

18.7-31.4
現在の可能性のある反応性リンの合計のフラックス(DIP+DOP+POP+鉄結合PIP+風成反応性P) 3.4-10.1


ホーム