『Abstract
Long-term effects of rice (Oryza sativa L.) cultivating
with varying nutrient management on soil P fraction are important
to understand from soil nutritional and environmental point of
view. Soil P fractionation gives an idea about the soil P supplying
capacity to plants. The present experiment was conducted to evaluate
the effect of different nutrient management in wetland rice on
the changes of soil P fraction at different depths. Soil samples
from five depths (0-5, 5-10, 10-15, 15-30, and 30-50 cm) were
collected from a long-term experimental field classified as a
Chhiata clay loam, hyperthermic Vertic Endoaquept. The field received
six treatments for 10 yr: absolute control with no fertilizer
applied (T1), one-third of recommended fertilizer
doses (T2), two-thirds of recommended fertilizer
doses (T3), full doses of recommended fertilizer
(T4), T2 + 5 Mg cow
dung (CD) and 2.5 Mg ash ha-1 (T5),
and T3 + 5 Mg CD and 2.5 Mg ash ha-1
(T6). The apparent balance of P compared
with the initial P status after 10 yr varied from -115 kg ha-1
under T1 to 348 kg ha-1 under
T6. The P fractionation study was conducted
over the treatments and soil depth. Treatment and depth had no
significant effect on solution P. Larger concentrations of NaHCO3 soluble P, NaOH extracted inorganic P (Pi), and acid P were observed under treatments
with organic fertilizers (T5 and T6)
than with other treatments at 0- to 5-, 5- to 10-, and 10- to
15-cm depths. The concentrations of NaHCO3-P,
NaOH-Pi and acid P fractions were lowest
under T1 and T2 treatments.
At 15 to 30 cm or lower soil depths, none of the P fractions were
affected by treatments. The change in NaOH organic P (Po)
and residual P (extracted with HNO3 + HClO4) with soil epth was not significant, and the
differences in these P fractions under the tested P treatments
were not large. The depletion of NaHCO3-P
and NaOH-Pi at the 0- to 15-cm depth under
control and T2 suggests that the rice plant
depends upon these fractions of P. The P depletion profile in
wetland rice appears to be confined within the first 15-cm depth.
The mean P uptake by rice showed a polynomial relationship with
NaHCO3-P and NaOH-Pi
(abverage of 0-15 cm) and it was linearly correlated with acid
P (0-15 cm).』
Abbreviations
(Introduction)
Materials and methods
Soil and location
Sequential phosphorus fractionation
Results and discussion
Solution soil phosphorus
NaHCO3-P
NaOH-Pi
NaOH-Po fraction
Acid phosphorus
Residual phosphorus
Conclusions
References
連続的なリンの留分化(抽出法)
無機と有機のリンの留分化は、Sui and Thompson(1999)によるものを修正した方法を各土壌試料に適用した。具体的には以下の手順である:
(1)土壌試料1gを0.05M塩化カルシウム(CaCl2)溶液30mLに加えて16時間攪拌し、遠心分離の後にろ過して、溶液中のリンを測定する。⇒溶液リン
(2)(1)の残渣を0.5M炭酸水素ナトリウム(重炭酸ナトリウム、重炭酸ソーダ)(NaHCO3)溶液30mLに加えて16時間攪拌し、遠心分離の後にろ過して、溶液中のリンを測定する。⇒NaHCO3−リン
(3)(2)の残渣を0.1M水酸化ナトリウム(苛性ソーダ)(NaOH)溶液30mLに加えて攪拌し、遠心分離の後にろ過して、溶液に濃塩酸(HCl)5mLで酸性にした後に遠心分離を行い、測定する。⇒NaOH-Pi(無機物)−リン
(4)(2)の残渣を濃硫酸(H2SO4)6mlに加え、1時間温浸して5mLにする。その後、冷却する。過酸化水素(H2O2)5mLを加え、残渣が白色になるまで再加熱する。その後、溶液を測定し、その値から(3)の値を差し引く。(Hedley
et al., 1982)⇒NaOH-Po(有機物)−リン
(5)(3)の残渣を1M塩酸(HCl)と1M硫酸(H2SO4)の1:1溶液30mLに加えて攪拌し、遠心分離の後にろ過して、測定する。⇒酸性リン
(6)(5)の残渣を濃硝酸(HNO3)と過塩素酸(HClO4)の5:2混合液よう6mLに加え、温浸の後に測定する。(Hedley et al.,
1982)⇒残留リン
リンの測定は、試料液を中性に調節した後に、比色分析法(Murphy and Riley, 1962)で行える(リンの吸光度は712
nmの波長)。