Marakushev,A.A. and Marakushev,S.A.(2008): Formation of oil and gas fields. Lithology and Mineral resources, 43(5), 454-469.


 Cycles of the geosynclinal-orogenic-platformal development of the continental crust are separated by natural phases of crustal destruction. They are determined by pulses of degassing of the Earth's core marked by decelerated inversions of the magnetic field. Such pulses occur under the influence of fluid flows that ascend from the core and loss hydrogen. Consequently, the fluids acquire acidic properties and become aggressive to rocks of the continental crust (H2 + 2CO = H2O + 0.5CO2 + 1.5C). Oceanization of the continental crust represents the main result of its destruction accompanied by the formation of seas and sedimentary basins largely on the underwater margins of continents. Development of geodynamic compression setting of the Earth's crust due to its evolution creates conditions that impede the loss of hydrogen from ascending fluid flows. Consequently, they acquire the ability to generate hydrocarbons (4H2 + CO =2H2O + CH4 + C) and produce oil and gas pools. This setting is marked by intrusions of alkaline rocks with characteristic water-hydrocarbon inclusions in minerals and by the development of fold-thrust and reversed fault dislocations in depressions. The dislocations controlled not only the fluid-related leaching of rocks, but also the distribution of oil and gas pools within both sedimentary basins and their basement.』

Abyssal generation of hydrocarbons and their upward migration
Generation of hydrocarbons in connection with magmatism, ore accumulation, and formation of platform depressions
Formation of oil and gas pools