Smith et al.(2006)による〔『Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling』(608p)から〕

『pH 2 と 3 での鉄明礬石(KFe3(SO4)2(OH)6)の溶解:バッチ実験とコンピューター・モデルによる洞察』


Abstract
 Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.』

1. Introduction
2. Methods and materials
 2.1. Experimental studies
  2.1.1. Synthesis of jarosite
  2.1.2. Characterisation of synthetic jarosite
  2.1.3. Dissolution experiments
 2.2. Computational modelling
3. Results
 3.1. Characterisation of synthetic jarosite
 3.2. Dissolution experiments
  3.2.1. Dissolution at pH 2
   3.2.1.1. Solution chemistry
   3.2.1.2. Residual solids
  3.2.2. Dissolution at pH 8
   3.2.2.1. Solution composition
   3.2.2.2. Residual solids
 3.3. Computational modelling of the jarosite structure
  3.3.1. Bulk structure
  3.3.2. Surface structure
4. Discussion
 4.1. Dissolution at pH 2 and 8
 4.2. Environmental implications
5. Conclusions
Acknowledgments
References



戻る