『Abstract
Using trace element ratios with a common reference to a refractory
element, we have shown that carbonaceous chondrites define a straight
line in every diagram including the semi-volatile and volatile
elements with the relative position of CI, CM, CO and CV always
following the same order. We show that bulk Earth values estimated
only by terrestrial consideration, using Mg/Al for the refractories
or K/U, Rb/Sr for the volatiles, plot on the carbonaceous chondrite
line but not within the group of ordinary chondrites. The position
on the carbonaceous chondrite line varies according to volatility.
Highly refractory elements are close to CI, moderate refractories
close to CM and volatiles away from CV. Such systematics permit
the calculation of the bulk composition of the Earth for every
element. Those observations are in agreement with a condensation
temperature of the Earth ranging from 11 to 1200 K.
Keywords: Chemical ratios; Chemical composition; Geochemistry;
Earth; Volatile elements; Solar system; Condensation』
1. Introduction
2. The bulk Earth plots on the carbonaceous chondrite correlation
line in various chemical diagrams
2.1. Let us first define the ‘carbonaceous chondrite correlation
line’
2.2. The Earth composition in the refractory diagrams
2.3. The volatile/refractory diagrams
2.4. The carbonaceous chondrites cosmothermometer and its limitations
by the adsorption phenomenon
3. Chemical composition of the Earth
3.1. The method of calculation
3.2. The problem of halogens, the question of adsorption and
the computation for HVs
3.3. The rare gases, nitrogen and carbon
3.4. B and Be contents
『
元素名 | 組成 |
|
単位 | 元素名 | 組成 |
|
単位 |
He | 6.19 | 0.05 | ×10-13 | Ru | 1173 | 20 | ppb |
Li | 2.30 | 0.5 | ppm | Rh | 230 | 10 | ppb |
Be | 46 | 5 | ppb | Pd | 883 | 20 | ppb |
Be | 258 | 30 | ppb | Ag | 45.8 | 5 | ppb |
C | 1700 | ppm(up to 3900 ppm) | Cd | 182 | 10 | ppb | |
N | 1.27 | 1 | ppm | In | 9.42 | 1 | ppb |
O | 32.436 | 0.010 | % | Sn | 394 | 30 | ppb |
F | 5.12 | 0.5 | ppm | Sb | 40 | 5 | ppb |
Ne | 1.085 | 0.005 | ×10-11 | Te | 313 | 30 | ppb |
Na | 0.187 | 0.015 | % | I | 40.5 | 15 | ppb |
Mg | 15.8 | 0.1 | % | Xe | 3.38 | 0.1 | ×10-13 |
Al | 1.507 | 0.010 | % | Cs | 41.2 | 10 | ppb |
Si | 17.1 | 0.2 | % | Ba | 4.08 | 0.5 | ppm |
P | 690 | 10 | ppm | La | 415 | 10 | ppb |
S | 0.46 | 0.15 | % | Ce | 1088 | 20 | ppb |
Cl | 10 | 5 | ppm | Pr | 165 | 5 | ppb |
Ar(36Ar=) | 3.85 | 0.05 | ×10-11 | Nd | 814 | 10 | ppb |
K | 171 | 5 | ppm | Sm | 259 | 3 | ppb |
Ca | 1.62 | 0.02 | % | Eu | 97.9 | 3 | ppb |
Sc | 10.1 | 2 | ppm | Gd | 348 | 8 | ppb |
Ti | 764 | 20 | ppm | Tb | 66.6 | 5 | ppb |
V | 93 | 5 | ppm | Dy | 424 | 10 | ppb |
Cr | 4240 | 200 | ppm | Ho | 95.6 | 5 | ppb |
Mn | 1390 | 100 | ppm | Er | 278 | 15 | ppb |
Fe | 28.8 | 0.4 | % | Tm | 42.1 | 2 | ppb |
Co | 804 | 50 | ppm | Yb | 278 | 10 | ppb |
Ni | 1.69 | 0.03 | % | Lu | 42.5 | 2 | ppb |
Cu | 64.7 | 5 | ppm | Hf | 199 | 4 | ppb |
Zn | 24 | 2 | ppm | Ta | 27.9 | 2 | ppb |
Ga | 3.13 | 0.5 | ppm | W | 172 | 5 | ppb |
Ge | 7.30 | 1 | ppm | Re | 62.5 | 3 | ppb |
As | 1.06 | 0.1 | ppm | Os | 820 | 30 | ppb |
Se | 2.52 | 0.5 | ppm | Ir | 766 | 30 | ppb |
Br | 400 | 150 | ppb | Pt | 1562 | 40 | ppb |
Kr | 2.82 | 0.05 | ×10-12 | Au | 102 | 20 | ppb |
Rb | 0.6 | 0.05 | ppm | Hg | |||
Sr | 13.7 | 0.4 | ppm | Tl | 4 | 2 | ppb |
Y | 2.4 | 0.2 | Pba | 0.696 | 0.1 | ppm | |
Zr | 6.79 | 0.1 | ppm | Bi | 16 | 4 | ppb |
Nb | 471 | 10 | ppb | Th | 51 | 3 | ppb |
Mo | 1664 | 40 | ppb | U | 14.4 | 0.3 | ppb |
aUnradiogenic lead. |
3.5. Final adjustments: the example of K/U and the concentration
of K
3.6. The question of silicon and sulfur in the core
3.7. Some important consequences for isotope geochemistry
3.7.1. The U/Pb case
3.7.2. The Lu/Hf case
3.7.3. The Mn/Cr case
3.7.4. The Hf/W case
3.8. The chemical pattern of the Earth
3.9. Some comments about the formation of the Earth and early
solar system processes
Acknowledgements
References