Allegre(最初のeの頭に`) et al.(2001)による〔『Chemical composition of the Earth and the volatility control on planetary genetics』(61p)から〕


Abstract
 Using trace element ratios with a common reference to a refractory element, we have shown that carbonaceous chondrites define a straight line in every diagram including the semi-volatile and volatile elements with the relative position of CI, CM, CO and CV always following the same order. We show that bulk Earth values estimated only by terrestrial consideration, using Mg/Al for the refractories or K/U, Rb/Sr for the volatiles, plot on the carbonaceous chondrite line but not within the group of ordinary chondrites. The position on the carbonaceous chondrite line varies according to volatility. Highly refractory elements are close to CI, moderate refractories close to CM and volatiles away from CV. Such systematics permit the calculation of the bulk composition of the Earth for every element. Those observations are in agreement with a condensation temperature of the Earth ranging from 11 to 1200 K.

Keywords: Chemical ratios; Chemical composition; Geochemistry; Earth; Volatile elements; Solar system; Condensation』

1. Introduction
2. The bulk Earth plots on the carbonaceous chondrite correlation line in various chemical diagrams

 2.1. Let us first define the ‘carbonaceous chondrite correlation line’
 2.2. The Earth composition in the refractory diagrams
 2.3. The volatile/refractory diagrams
 2.4. The carbonaceous chondrites cosmothermometer and its limitations by the adsorption phenomenon
3. Chemical composition of the Earth
 3.1. The method of calculation
 3.2. The problem of halogens, the question of adsorption and the computation for HVs
 3.3. The rare gases, nitrogen and carbon
 3.4. B and Be contents

Table 4 Bulk composition of the Earth
元素名 組成

±
単位 元素名 組成

±
単位
He 6.19 0.05 ×10-13 Ru 1173 20 ppb
Li 2.30 0.5 ppm Rh 230 10 ppb
Be 46 5 ppb Pd 883 20 ppb
Be 258 30 ppb Ag 45.8 5 ppb
C 1700   ppm(up to 3900 ppm) Cd 182 10 ppb
N 1.27 1 ppm In 9.42 1 ppb
O 32.436 0.010 Sn 394 30 ppb
F 5.12 0.5 ppm Sb 40 5 ppb
Ne 1.085 0.005 ×10-11 Te 313 30 ppb
Na 0.187 0.015 I 40.5 15 ppb
Mg 15.8 0.1 Xe 3.38 0.1 ×10-13
Al 1.507 0.010 Cs 41.2 10 ppb
Si 17.1 0.2 Ba 4.08 0.5 ppm
P 690 10 ppm La 415 10 ppb
S 0.46 0.15 Ce 1088 20 ppb
Cl 10 5 ppm Pr 165 5 ppb
Ar(36Ar=) 3.85 0.05 ×10-11 Nd 814 10 ppb
K 171 5 ppm Sm 259 3 ppb
Ca 1.62 0.02 Eu 97.9 3 ppb
Sc 10.1 2 ppm Gd 348 8 ppb
Ti 764 20 ppm Tb 66.6 5 ppb
V 93 5 ppm Dy 424 10 ppb
Cr 4240 200 ppm Ho 95.6 5 ppb
Mn 1390 100 ppm Er 278 15 ppb
Fe 28.8 0.4 Tm 42.1 2 ppb
Co 804 50 ppm Yb 278 10 ppb
Ni 1.69 0.03 Lu 42.5 2 ppb
Cu 64.7 5 ppm Hf 199 4 ppb
Zn 24 2 ppm Ta 27.9 2 ppb
Ga 3.13 0.5 ppm W 172 5 ppb
Ge 7.30 1 ppm Re 62.5 3 ppb
As 1.06 0.1 ppm Os 820 30 ppb
Se 2.52 0.5 ppm Ir 766 30 ppb
Br 400 150 ppb Pt 1562 40 ppb
Kr 2.82 0.05 ×10-12 Au 102 20 ppb
Rb 0.6 0.05 ppm Hg      
Sr 13.7 0.4 ppm Tl 4 2 ppb
Y 2.4 0.2 Pba 0.696 0.1 ppm
Zr 6.79 0.1 ppm Bi 16 4 ppb
Nb 471 10 ppb Th 51 3 ppb
Mo 1664 40 ppb U 14.4 0.3 ppb
aUnradiogenic lead.

 3.5. Final adjustments: the example of K/U and the concentration of K
 3.6. The question of silicon and sulfur in the core
 3.7. Some important consequences for isotope geochemistry
  3.7.1. The U/Pb case
  3.7.2. The Lu/Hf case
  3.7.3. The Mn/Cr case
  3.7.4. The Hf/W case
 3.8. The chemical pattern of the Earth
 3.9. Some comments about the formation of the Earth and early solar system processes
Acknowledgements
References


戻る